[학술논문] MODIS NDVI와 강수량 자료를 이용한 북한의 벼 수량 추정 연구
식량수급을 이해하기 위한 농업 현황 정보가 부족한 북한을 대상으로 위성영상과 기후자료를 이용하여 객관적이고 재현 가능한 벼 수량을 추정하는 방법을 개발하는 것을 본 연구의 목적으로 하였다. 2002년부터 2014년까지의 MODIS 위성 식생지수 평균 NDVI 최대값과 27개 관측지점의 9월 강수량 자료를 이용하여 북한의 벼 수량 값을 추정하였다. 모형의 결정계수는 0.44, RMSE는 0.27 ton/ha로 다소 크게 나타났고, 분산분석결과 F비가 3.0983, 유의확률이 0.1008을 보였다. 벼논 지역의 MODIS 평균 NDVI 최대값과 등숙기의 기후자료를 이용하여 추정한 북한의 벼 수량은 2007년이 2.71 ton/ha로 가장 낮게, 2006년이 3.54 ton/ha로 가장 높게 나타났다. 통계 값과
[학술논문] 준감독 학습과 공간 유사성을 이용한 비접근 지역의 작물 분류 - 북한 대홍단 지역 사례 연구 -
이 논문에서는 비접근 지역의 작물 분류를 목적으로 준감독 학습에 인접 화소의 공간 유사성 정보를 결합하는 분류 방법론을 제안하였다. 적은 수의 훈련 자료를 이용한 초기 분류 결과로부터 신뢰성 높은 훈련 자료의 추출을 위해 준감독 학습 기반의 반복 분류를 적용하였으며, 새롭게 훈련 자료 추출시 인접한화소의 분류 항목을 고려함으로써 불확실성이 낮은 훈련 자료를 추출하고자 하였다. 북한 대홍단에서 수집된 다중시기 Landsat-8 OLI 영상을 이용한 밭작물 구분의 사례 연구를 통해 제안된 분류 방법론의 적용 가능성을 검토하였다. 사례 연구 결과, 초기 분류 결과에서 나타난 작물과 산림의 오분류와 고립된 화소가 제안 분류 방법론에서 완화되었다. 또한 인접 화소의 분류 결과를 고려한 훈련 자료 추출을 통해 이러한 오분류