적산 온도는 작물 재배 의사결정 지원을 위해 대상지역 주변 기상 관측소의 자료를 활용하여 산정되어 왔다. 한편 Moderate Resolution Imaging Spectroradiometer (MODIS) 자료로부터 공간적인 온도 자료를 바탕으로 특정 지점의 적산 온도 자료를 생산할 수 있다. 본 연구의 목적은 MODIS 자료를 처리하는 도구를 개발하고 이를 바탕으로 작물의 고온 피해도 및 시설의 냉방 요구도 분석에 활용될 수 있는 냉방도일을 계산하고자 하였다. R 스크립트를 사용하여 특정 지역의 MODIS 기온자료를 생성하는 모듈들을 작성하였다. 해당 스크립트들은 격자자료의 좌표계 변환과 자료들의 공간적인 통합 기능들을 가지고 있었다. 온도 수직 분포 자료로부터 지표 기압에 해당하는 온도를 추출하는 기능은 rgdal과 RcppArmadillo등의 패키지를 활용하여 구현되었다. 또한 냉방도일 및 일평균 온도 추정을 위해 MODIS 기온 자료, day of year, 및 위도를 입력 자료로 사용하는 random forest (RF) 모형을 남한 지역의 24개 지점에 대하여 훈련하였다. 인공위성 자료 별로 훈련된 RF 모형을 사용하여 한반도 지역의 일별 냉방도일을 계산하였다. 특히, 북한지역에 24개 지점에 대해 검증한 결과, MODIS 자료를 바탕으로 추정된 지역별 평균 연간 냉방도일은 관측값 변이의 96%를 설명할 수 있었다. 이러한 결과는 MODIS 자료로부터 유효적산온도 및 난방도일 등 다른 농림 기상 모형의 입력자료 생산을 지원할 수 있다는 것을 암시하였다.
카카오톡
페이스북
블로그