Quantitative assessment on the impact from North Korean emissions to surface particulate matter (PM) concentration in the Seoul Metropolitan Area (SMA), South Korea is conducted using a 3-dimensional chemistry transport model. Transboundary transport of air pollutants and their precursors are important to understand regional air quality in East Asian countries. As North Korea locates in the middle of main transport pathways of Chinese pollutants, quantifiable estimation of its impact is essential for policy making in South Korean air quality management. In this study, the Community Multiscale Air Quality Modeling System is utilized to simulate regional air quality and its sensitivity, using the Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment 2015 and the Clean Air Policy Support System 2013 emissions inventories for North and South Korea, respectively. Contributions were estimated by a brute force method, perturbing 50% of North and South Korean emissions. Simulations demonstrate that North Korean emissions contribute 3.89 μg/m3 of annual surface PM concentrations in the SMA, which accounts 14.7% of the region’s average. Impacts are dominant in nitrate and organic carbon (OC) concentrations, attributing almost 40% of SMA OC concentration during January and February. Clear seasonal variations are also found in North Korean emissions contribution to South Korea (and vice versa) due to seasonal characteristics of synoptic weather, especially by the change of seasonal flow patterns.
카카오톡
페이스북
블로그